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Abstract

Land Use and Land Cover (LULC) classification p lays a p ivotal r ole i n understanding
and managing environmental resources. This s tudy p resents a n ovel m ethodology utilizing
sentinel satellite data in conjunction with two robust machine learning algorithms: Random
Forest (RF) and Support Vector machine (SVM) on Google Earth Engine platform. Sentinel
data, renowned for its high- resolution multispectral imagery, provides rich information
for classification. G oogle E arth E ngine p rovides a ccesst o v ast g eospatial d atasets and
computational resource, enabling effective analysis. RF and SVM, distinguished for their ability
to handle complex dataset, are employed to optimize classification a ccuracy. A systematic
work flow for preprocessing of Sentinel imagery is outlined, followed by implementation of RF
and SVM algorithm with a focus on accurately classifying vegetation, built-up areas, barren
land and water bodies. Evaluation metrics including overall accuracy and kappa coefficient
demonstrate the efficacy of the proposed methodology. A compelling study demonstrates the
utility of RF and SVM within GEE for precise LULC mapping, highlighting their pivotal role in
supporting informed decision-making for environmental planning and conservation initiatives.
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1 Introduction

Land Use and Land Cover (LULC)
classification plays a pivotal role in
understanding the dynamic interactions
between human activities and the envi-
ronment. LULC classification is fun-
damental for assessing changes in the
Earth’s surface, which is very impor-
tant for environmental management.
Understanding LULC dynamics pro-
vides insights into ecosystem health,
habitat fragmentation, urbanization pat-
terns, and climate change. Remote sens-

ing techniques coupled with advanced
classification algorithms are pivotal for
accurate LULC mapping. LULC clas-
sifications serve as valuable inputs for
land-use planning, agricultural manage-
ment, water resource assessment, and
policy formulation at local, regional,
and global scales. Continuous monitor-
ing and updating of LULC datasets are
essential for tracking landscape transfor-
mations over time, supporting sustain-
able development goals and informed
decision-making processes!).
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Sentinel-2 satellite imagery offers high-resolution multi-
spectral data, enabling detailed and accurate classification of
LULC categories. The spectral bands provided by Sentinel-
2, including visible, near-infrared, and short-wave infrared,
facilitate discrimination between various land cover types
based on their unique spectral signatures®. Pre-processing
steps such as radiometric calibration, atmospheric correc-
tion, and geometric rectification are essential to ensure the
quality and accuracy of Sentinel-2 imagery for LULC classi-
fication®. Continuous monitoring using Sentinel-2 imagery
allows for temporal analysis of LULC changes over time, sup-
porting land management decisions, environmental moni-
toring, and climate change studies. Sentinel-2 imagery can
capture seasonal variations and changes in vegetation health,
aiding in the identification of agricultural land use, for-
est cover, urban areas, water bodies, and other land cover
types . Integration of ancillary data such as digital eleva-
tion models, land use maps, and field surveys enhances the
accuracy of LULC classification using Sentinel-2 imagery.
Despite its advantages, challenges such as cloud cover, atmo-
spheric interference, and spectral confusion in highly hetero-
geneous landscapes can affect the accuracy of LULC classi-
fication using Sentinel-2 imagery, requiring careful consid-
eration and mitigation strategies. The open-access nature of
Sentinel-2 data and the availability of cloud-based process-
ing platforms like Google Earth Engine make LULC classifi-
cation using Sentinel-2 imagery accessible and cost-effective
for a wide range of applications.

Google Earth Engine (GEE) provides a powerful platform
for conducting Land Use and Land Cover (LULC) analyses
using a vast archive of satellite imagery. GEE offers access
to an extensive collection of remote sensing datasets, includ-
ing Sentinel-2, Landsat, MODIS, and more, covering a wide
range of spatial and temporal resolutions suitable for LULC
classification. GEE’s JavaScript-based programming interface
enables users to develop custom scripts for LULC classifi-
cation, offering flexibility and customization options to suit
specific research or application needs. GEE’s collaboration
features enable researchers and practitioners to share code,
datasets, and results, fostering collaboration and knowledge
exchange in the field of LULC analysis. The scalability, acces-
sibility, and rich feature set of GEE make it a valuable tool
for conducting LULC research, monitoring environmental
changes, and supporting decision-making processes at local,
regional, and global scales ®).

RF (Random Forest) is an ensemble learning method
that combines the predictions of multiple decision trees,
making it robust against over fitting and capable of handling
complex LULC classification tasks. SVM is a supervised
learning algorithm that works well for classifying LULC
categories by finding the optimal hyperplane that separates
different classes in the feature space. GEE provides built-in
implementations of RF and SVM algorithms, allowing users

to easily apply these techniques to classify LULC categories
using satellite imagery®. GEFE’s JavaScript API enables
users to customize RF and SVM classification workflows,
including parameter tuning and feature selection, to optimize
classification accuracy for specific LULC mapping objectives.
Leveraging advanced machine learning algorithms such
as Random Forest (RF) and Support Vector Machines
(SVM) within the Google Earth Engine (GEE) platform has
become increasingly popular for accurate and efficient LULC
analysis 7).

In this paper, we explore the application of RF and SVM
in LULC classification on the GEE platform. We examine
their capabilities, advantages, and limitations, as well as the
methodologies and workflows involved. By harnessing the
computational power and data resources provided by GEE,
RF and SVM algorithms enable scalable and accurate LULC
mapping, supporting a wide range of environmental monitor-
ing, land management, and conservation applications.

2 Methodology
Study Area

Bangalore is the fourth largest Municipal Corporation in
India. It is responsible for a population of 6.8 million in
an area of 741 km?2. Its boundaries have expanded more
than 10 times over the last six decades. Bangalore lies in the
southeast of the South Indian state of Karnataka. It is in the
heart of the Mysore Plateau at an average elevation of 900 m
(2,953 ft). It is located at 12°58'44"N, 77°35'30"”E and covers
741 km? (286 sq mi). The majority of the city of Bangalore
lies in the Bangalore Urban district of Karnataka and the
surrounding rural areas are a part of the Bangalore Rural
district (Figure 1).

Data

This study utilizes Sentinel-2 satellite imagery, which offers
medium resolution multispectral data, for LULC classifica-
tion. Sentinel-2 data provide valuable spectral information
across various wavelengths, including visible, near-infrared,
and short-wave infrared bands. The Sentinel -2 image consists
of 13 spectral bands. The data were accessed from Coperni-
cus Open Access Hub using GEE (https://earthengine.google.
com/) platform ®). The Sentinel data used is dated from 2023-
01-12 to 2024-03-07

The Sentinel-2 data utilized in this study are acquired from
the European Space Agency’s (ESA) Sentinel missions, specif-
ically Sentinel-2A and Sentinel-2B satellites. These satellites
orbit the Earth in a sun-synchronous manner, capturing
images with a revisit time of approximately 5 days, ensur-
ing frequent and consistent monitoring of the study area. The
Sentinel-2 imagery is pre-processed to ensure data quality
and consistency. This includes radiometric calibration, atmo-
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Location Map of the Study Area
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Fig. 1. Study Area

Table 1. Specification of Sentinal-2 spectral bands

Bands Description Spatial resolution
2 Blue 10
3 Green 10
4 Red 10
5 Red Edge 1 20
6 Red Edge 2 20
7 Red Edge 3 20
8 NIR 10
11 SWIR 20
12 SWIR 20

NIR - Near- InfraRed reflectance SWIR - Short wave InfraRed

spheric correction, and geometric rectification to remove dis-
tortions and artifacts from the images. Additionally, cloud
masking techniques are applied to mitigate the impact of
cloud cover on LULC classification accuracy. The spectral
bands of Sentinel-2 image, coupled with its spatial resolution
(ranging from 10 to 60 meters), enable the discrimination of
various land cover features, including water bodies, urban,
barren land and vegetation.

Algorithms

Support Vector Machine (SVM)

Support Vector Machines (SVM) are a powerful class of
supervised learning algorithms used for classification and
regression tasks. In the context of LULC classification®).

I Google Earth Engine I

[ selecingror |

I Collection of sentinel-2 data |

€

| Filtering Image collection |

€

| Collecting training points |

€

| Merging training Points |

Classification using RF and SVM
classifier

I Accuracy Assessment |

Area Calculation

Fig. 2. Methodology for LULC classification using GEE platform

SVM has emerged as a popular method due to its ability to
handle high-dimensional data and nonlinear decision bound-
aries. SVM can efficiently handle datasets with a large num-
ber of features, making it suitable for LULC classification
tasks that involve multispectral satellite imagery. In the case of
LULC classification on the Google Earth Engine (GEE) plat-
form, SVM algorithms are implemented to classify different
land cover categories based on spectral signatures extracted
from satellite imagery. One of the advantages of SVM is
its versatility in handling both linear and nonlinear classifi-
cation problems. By using kernel functions, SVM can map
input features into higher-dimensional spaces, allowing for
more complex decision boundaries that can better capture
the underlying structure of the data. SVM classifiers trained
on GEE can be optimized using various techniques, such as
parameter tuning and feature selection, to improve classifi-
cation accuracy. Additionally, GEE’s cloud-based infrastruc-
ture enables efficient processing of SVM algorithms, making
it suitable for large-scale LULC classification tasks. Overall,
SVM algorithms play a significant role in LULC classifica-
tion by leveraging the rich spectral information provided by
satellite imagery. Their ability to handle complex datasets and
nonlinear decision boundaries makes SVM a valuable tool for
accurately mapping land cover types and monitoring land-
scape changes over time.

Random Forest (RF)

Random Forest (RF) is a versatile and widely-used ensem-
ble learning method employed in classification, regression,
and other machine learning tasks. In the realm of LULC
classification, RF has gained prominence due to its ability
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to handle high-dimensional data, complex decision bound-
aries, and mitigate overfitting. RF operates by constructing
multiple decision trees during the training phase. Each tree
is trained on a subset of the dataset and makes individual
predictions. The final prediction is determined by aggregat-
ing the predictions of all the trees, commonly through a
majority voting mechanism for classification tasks 1%, This
ensemble approach enhances the robustness and accuracy
of the classifier while reducing the risk of bias. In the con-
text of LULC classification on platforms like the Google
Earth Engine (GEE), RF algorithms are utilized to classify
different land cover categories based on spectral signatures
extracted from satellite imagery. RF provides measures of
variable importance, which can help identify the most rel-
evant features for classification. This insight is valuable for
understanding the underlying relationships between spectral
bands and land cover types, aiding in feature selection and
model interpretation.

Accuracy Assessment

Accuracy assessment is a crucial step in evaluating the reli-
ability and quality of land cover classifications derived from
remote sensing data. Several methods can be employed for
accuracy assessment, including error matrices, confusion
matrices, kappa statistics, and user/producer accuracy. The
Accuracy assessment was performed to evaluate the perfor-
mance of the model. The composed points for water bod-
ies, urban, barren land and vegetation have been scripted in
JavaScript-based code and divided in 80% training and 20%
testing datasets. A built-in method in GEE confusion matrix
is a tabular representation used to evaluate the performance
of a classification model. It provides a detailed breakdown of
the predicted and actual classes, allowing for the calculation
of various accuracy metrics. The overall accuracy (OA) and
kappa coefficient (Kc) can be calculated using following equa-

tions 1),
Pc
OA=| — 100
(7))

Pc — number of pixels classified correctly
Pn - total number of pixels

k= NYxi— Xisy (xipxxs)
N2 =Yy (xipxxy)

Where,
r - the number of rows and columns in the error matrix,
X;; - the number of observation in row i and column i,
X;4 - the marginal total of row i,
x4 7- the marginal total of column i, and
N = the total number of observation.

3 Results

The current research evaluates the performance of three
machine learning techniques: SVM, and RE for the LULC
classification of Bangalore District, Karnataka, India. These
algorithms were applied for the classification of four major.
The LULC map of the Bangalore district of India produced
by RF is shown in Figure 3 (a) and Figure 3 (b) shows LULC
classification using SVM. The classification results revealed
that 40.72 km?is classified as water, 1534.353 km? as urban,
29.9 km? as barrenland, and 580.882 km? as vegetation. The
results of the RF model for the LULC map of the current study
are shown in Figure 4 (a) The SVM results of the LULC map
of the study area illustrated that 41.37 km? is classified as
water, 1369.986 km? as built up, 155.777km? as barrenland,
and 618.723 km?) as surface vegetation of the Bangalore. The
results are shown in Figure 4 (b).

Il water
Il urban
I barrenland

Il vegetation

B vater
I urban
B barrenland
Il vegetation

Fig. 3. 2(a) LULC classification using RF 2(b) LULC classification
using SVM
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Fig. 4. (a) Area of LULC classes using RF (b) Area of LULC classes
using SVM

Results Validation

In the validation of the Random Forest (RF) model for
Land Use and Land Cover (LULC) classification, the Overall
Accuracy (OA) was determined to be 89.74%, denoting the
proportion of correctly classified pixels across all land cover
categories. Additionally, the Kappa Coefficient (Kc) yielded
a value of 0.87, indicating substantial agreement between
observed and predicted classifications beyond what would be
expected by chance alone. Furthermore, while the precision
values for individual land cover categories were not explicitly
provided, it can be inferred that the RF model demonstrated
commendable precision in accurately identifying specific land
cover classes among all instances classified as such.

Similarly, for the Support Vector Machine (SVM) model,
the Overall Accuracy was found to be higher at 92.86%,
showcasing a greater proportion of correctly classified pix-
els compared to the RF model. Moreover, the Kappa Coef-
ficient (Kc) reached 0.89, indicating a high level of agreement
between observed and predicted classifications, approach-
ing near-perfect agreement. Additionally, the precision of the

SVM model in LULC classification was notable, demonstrat-
ing the accuracy of identifying specific land cover categories
among all instances classified as such.

These validation results underscore the effectiveness of
both the RF and SVM models in accurately classifying
LULC types, with the SVM model showing slightly higher
performance. The inclusion of precision values would further
enrich the assessment, providing insights into the accuracy
of individual land cover classifications within the models
outputs.

4 Conclusion

Land Use and Land Cover (LULC) classification is pivotal for
understanding the Earth’s surface dynamics and supporting
various environmental management initiatives. Leveraging
Sentinel-2 satellite data and the Google Earth Engine (GEE)
platform has revolutionized LULC mapping, offering access
to high-resolution multispectral imagery and advanced pro-
cessing capabilities.

In our study, we applied Random Forest (RF) and Support
Vector Machine (SVM) models to classify LULC categories,
utilizing the rich spectral information provided by Sentinel-
2 data. Both RF and SVM algorithms demonstrated high
accuracy in land cover classification, highlighting their
effectiveness in extracting meaningful information from
satellite imagery.

The availability of more training points and the use of
robust classification algorithms like RF and SVM are crucial
for improving accuracy in LULC mapping. By incorporating
additional training data and optimizing model parameters,
we can enhance the reliability and precision of land cover
classifications, providing valuable insights into landscape
dynamics and environmental changes.

Moving forward, continued advancements in remote sens-
ing technology, machine learning algorithms, and geospa-
tial data analysis techniques will further enhance the accu-
racy and applicability of LULC classification methodologies.
By harnessing the power of Sentinel-2 data, GEE platform,
and advanced classification techniques like RF and SVM, we
can support informed decision-making processes, facilitate
sustainable land management practices, and address pressing
environmental challenges on a global scale.
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